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Abstract—It is known that clinical trials have potential risks for
participants, which could result in unexpected adverse events. To
quantify and predict the risk of adverse outcomes, we leverage
a large amount of clinical reports to build machine learning
models to predict adverse outcomes. We focused on death events
as the predicting target in this study. From Clinicaltrial.gov, we
collected 28,340 reports and transformed the data into vectorized
machine learning features. These features were harmonized
across studies using semantic mapping and feature selection
techniques. The resulting selected clinical trial features were
used to build five machine learning models for prediction. We
evaluated and compared relative model performances for the
prediction task. Results show that the logistic regression algo-
rithm achieved the best overall receiver operating characteristic
score at 0.7344. This exploratory study showed that it is feasible
to use clinical trial factors to predict adverse outcomes. We
demonstrated the approach by focusing on building machine
learning models to predict the death outcomes. Predicting adverse
outcomes could help clinical trials estimate harmful risks and
design better mechanisms to protect participants. We hope by
using our models, a clinical trial expert will be able to assess
whether serious adverse events are likely to occur in a clinical
trial at the early stage and to estimate what potential trial factors
could contribute to the potential serious adverse events.

Index Terms—Clinical Trials, Machine Learning, Prediction,
Classification, Adverse Event, Big Data

I. INTRODUCTION

A randomized clinical trial is still considered the gold

standard for evaluating the safety and efficacy of medical

interventions [1]. According to a report from the U.S. Food

and Drug Administration (FDA) [2], clinical studies have

become more globalized in the recent years. For the FDAs

new studies of drugs alone, there were 131,749 participants

from 70 countries involved in clinical trials during 2015 and

2016 [2]. Tens of thousands of people participate in clinical

trials around the world each year. This participation is crucial

for developing and evaluating new intervention methods for

controlling diseases. However, given the experimental nature

of clinical research, participants in clinical trials have a greater

§Corresponding author: Jake Luo, College of Health Sciences, University
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chance of experiencing harmful adverse events. Some of these

adverse events are serious, life-threatening events that have a

significant impact on the participants and the trials [3]. For

example, in 2016, a new cancer treatment trial was temporarily

suspended by the FDA for review because of severe side-

effects that were the suspected cause of death for a number of

participants [4]. Monitoring and reporting adverse events are

required by clinical trial regulatory agencies such as the FDA

and the European Medicines Agency.

Adverse-event monitoring is a major component of the

risk-based monitoring of clinical trials [5]. To reduce harm

and protect trial participants, almost all regulatory agencies

have guidelines for risk-based monitoring of clinical trials

[1]. However, these guidelines are usually described only in

general terms, and clinical investigators implement them based

on their own experience. In the past decade, a large amount

of clinical trial data has been published [6]. We hypothesize

that by leveraging such data we could build models to better

quantify the adverse-event risks of clinical trials based on

the trial and patient characteristics. Therefore, in this study,

we explore the potential of harmonizing a large number of

trial factors across different clinical trials to construct data-

driven machine learning models for predicting adverse event

outcomes. This study primarily focuses on the death event,

which is the most severe adverse event in a clinical trial [1],

[7].

Many factors could be associated with death events in

clinical trials. For example, trials targeting acute diseases

usually have a higher risk compared to those targeting chronic

diseases. Trials targeting cancer conditions also have a higher

risk than non-cancer studies. Similarly, the age group of

participants and the phase of the clinical trial both are fac-

tors influencing the number of serious adverse events. This

indicates that clinical trial factors could be used as predictors

for outcome analysis. Therefore, one of our goals in this study

is to normalize trial factors across a large number of clinical

trials to enable the building of cross-trial machine learning

models.

Using clinical factors to predict medical outcomes has been
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proved extremely useful. Clinical factors have been used to

successfully predict outcomes for conditions such as Ebola

[8], breast cancer [9], heart disease [10], and drug toxicities

[11]. Researchers have explored the prediction of mortality for

patients who have undergone elective cardiac surgery [12], for

patients with sepsis in emergency departments [13], and for

hospital patients with pneumonia [14]. All studies published in

this area have indicated that building machine learning models

based on clinical factors is an effective means of measuring

clinical risks and protecting patients. As with other data-driven

applications, it should be stressed that data quality and data

volume are important in medical outcomes prediction [15].

Randomized clinical trial data is of high quality to be used in

data-driven modeling for accurate adverse event prediction.

The main contributions of this study are two: 1) The poten-

tial of using clinical trial data for adverse outcome prediction

is explored. We develop methods to normalize data across

clinical trials. Using the collected data, we evaluate machine-

learning based models for outcome prediction. 2) This study

complements existing clinical trial risk estimation methods

by providing a quantitative approach for analyzing adverse

event predictors. Currently, clinical investigators rely on their

experience and on risk evaluation guidelines to assess the risks

in trials. This study quantifies risk factors using an evidence-

based, data-driven approach, which is a novel approach to

estimate adverse trial outcomes. We test our hypothesis by

focusing on predicting death events, which is the most severe

event for a trial participant. To the best of our knowledge, this

is the first significant effort in constructing machine learning-

based models for adverse outcome prediction in clinical trials.

II. METHODS

Overall, our methods consisted of three major stages, as

shown in Fig. 1. First, we acquired clinical trial reports from

clinicaltrials.gov. We converted the acquired trial reports to

a vectorized representation according to the data types and

data values. This vectorized representation enabled cross-trial

comparison and machine learning-based model building. Sec-

ond, we trained and evaluated the machine learning model for

adverse outcome prediction using five different machine learn-

ing algorithms. We also created a baseline for performance

analysis for the task of predicting death events. Finally, we

explored three approaches to optimize the model performance,

including Unified Medical Language System(UMLS)-based

synonym mapping, correlation analysis, and feature selection.

The third stage also included a comprehensive statistical

analysis, which aimed to find potential correlations between

trial factors and adverse outcomes.

A. Data Source

The study data was retrieved from clinicaltrials.gov [16].

Clincaltrials.gov collects clinical trial data from more than

180 countries and areas around the world and is the largest

public clinical trial repository. Many clinical trial regulation

agencies and clinical research journals require that trials

publish their protocols and results on clinicaltrials.gov [6],

Fig. 1. Diagram of overall study framework. Stage 1: Converting all clinical
trial reports into computer readable format. Stage 2: Training and evaluating
five different machine learning algorithms. Stage 3: Conducting feature opti-
mization analysis, including semantic normalization. ROC: receiver operating
characteristics, SVM: support vector machine.

[16], [17]. Therefore, the trial information documented on the

repository is comprehensive and representative [17]. The study

results are reported when a clinical trial is completed. The

collected reports contain a large amount of rich information,

such as the clinical trial phase, data on adverse events among

participants, and demographic information. In this study, we

acquired data for 255,065 clinical trials and filtered in 28,340

clinical trials that reported their final outcomes. Among these

studies, a following analysis showed that 1,820 trials had at

least 1 death event during the study period. These trials were

used as positive cases, and other, non-death trials were used

as negative cases for machine learning.

B. Transforming Trial Reports into a Vectorized Representa-
tion for Cross-Trial Modeling

The acquired clinical trial reports were not fully structured

and had been originally designed for trial monitoring purposes.

The information was not ready for computational modeling.

Therefore, the first stage was to transform the collected reports

into computable vectorized representations. This representa-

tion was a prerequisite for cross-trial analysis and machine

learning-based modeling. The goal here was to extract the

clinical trial factors from report documents. These extracted

factors were categorized and vectorized to ensure consistent

representation across trials. From the acquired 28,340 trials,

we extracted 122,586 data elements. These data elements

can be broadly grouped into seven categories: participant

270



Fig. 2. Encoding the text report to matrix notation. First, we filter those
clinical trials with valid reports of study results. Second, we extract key
information for every report, including these four types: (1) Demographics
information of patients and from the clinical trial design. (2) List of names
of all adverse events, where every different adverse event has a separate
dimension in the dataset. (3) List of names of all study interventions, where
every intervention has a separate dimension in the dataset. (4) The outcome
(death event) of the study.

information, trial phase, target condition, intervention method,

serious event, non-serious event, and the death event. The

death event was our prediction target. Other data elements

were used as trial features. We hypothesized that the extracted

trial features could be used to build machine learning models

for predicting death events.

C. Predictive Modeling of Death Events

The vectorized transformation of clinical trial reports en-

ables us to conduct cross-trial studies. The trial factors are

represented as features, and the death outcomes are labeled

for each trial. We hypothesized that the trial factors could

have predictive power with respect to the death outcomes. To

verify this hypothesis, we tested and evaluated five machine

learning algorithms: logistic regression, support vector ma-

chine, nave bayes, random forest, and decision tree. A 10-fold

cross validation was performed to estimate the performance

of the developed models, and the precision, recall, and F1-

scores were evaluated. The evaluation results were used as

a baseline model and are reported in the Results section.

After building the baseline model, we explored three feature-

engineering methods to further improve the clinical trial factor

representations.

D. Feature Engineering for Improving Machine Learning
Model Performance

As shown in Figure 1, the extracted clinical trial features

have a high dimension. This could impede the model building

and machine learning optimization. Therefore, we explored

three feature engineering methods to improve feature represen-

tation. The feature engineering could filter out low-importance

or potential duplicate features to reduce data dimension. Re-

ducing the feature dimension could make it easier to identify

which clinical trial factors have a stronger association with

death events. The three feature engineering methods evaluated

included variance selection, semantic mapping, and correlation

selection. Finally, to compare the effectiveness of the feature

engineering methods, we compared the new models to the

baseline model.

E. Optimizing the Model: Variance-Based Feature Selection
The first feature engineering technique applied was

variance-based feature selection, which removed trial features

that had a low variance score. Low-variance features usually

make little contribution to machine learning model building.

For example, if a feature had the same value across all data

samples, it would make no contribution to model building. We

used a minimum threshold of absolute variance value larger

than 0.001. Using this threshold, we were able to preserve

99.5% of the overall variance values across all collected

data. Features with a variance value less than 0.001 were

removed, leaving a total of 16,379 features. We ranked these

remaining features based on their variance score, and the

results are shown in Figure 3. The machine-learning models

were retrained and compared to the baseline models.

F. Semantic Mapping of Clinical Terminologies
Clinical trial reports are not fully standardized across trials.

Investigators may use different terms for the same clinical

meaning. For example, many phrases were used in the report

to indicate a hypertension condition, such as ”hypertension,”

”arterial hypertension,” ”high blood pressure,” and ”blood

pressure increased”. we used semantic mapping to address

this problem. First, we used the Unified Medical Language

System (UMLS) meta-thesaurus to identify clinical terms in

the feature set and map them to their semantic concepts.

If two or more terms mapped to the same UMLS concept

identifier, the corresponding features were merged into one

clinical trial feature. This allowed us to group all synonyms

for a given clinical meaning and treat them as a single feature.

The technique not only reduced the feature dimension but

also enhanced the ability for cross-trial analysis by identifying

comparable synonymous features across different trials.

G. Correlation-Based Feature Filtering
After merging synonymous features, we used a correlation-

based method to measure the association between each re-

maining individual feature and the death events. Features with

low correlation scores were removed. The Pearson coefficient

was used to calculate the correlation scores. It is a fast and

effective method to measure the correlation between trial

feature and outcome variable. The resulting value lies in [-

1, 1], with -1 indicating perfect negative correlation, and

+1 indicating perfect positive correlation. We ranked these

calculated correlation scores to identify trial features that had

a strong positive association with death events.
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III. RESULTS

Table 1 summarizes the extracted trial features and data

element examples. The first type of feature is participant

demographics, which includes the number of participants in

a trial and their median age. These features are naturally

represented as numerical values. The second type of feature

is the clinical trial phase. Typically, an intervention tested

in human trials moves progressively from phase 1 trials to

phase 4 trials, and each later phase involves more participants

than the previous. Phases 1, 2, and 3 are pre-marketing trials,

and phase 4 represents post-marketing trials conducted after

the release of the intervention to the market. The phase of a

trial is represented here as a nominal (categorical) feature. All

remaining features are represented as binary values. The third

feature type includes the target conditions of trials. A target

condition is the disease or symptom that a clinical study aims

to treat. The intervention is the fourth type of feature, which

is the treatment or therapeutic method (e.g., drug or medical

device) that was tested to address the target condition. The last

two feature types include all non-serious adverse events and

all serious, non-death adverse events that occurred during the

clinical trials. The death outcome is a boolean (true or false)

value, and it serves as the prediction target.

A. Evaluation Results of Baseline Models

As only 7.8% of the clinical studies reported death events

(1,820 of 23,374), the classification result is highly imbal-

anced. We used the area under receiver operating characteristic

curve (AUROC) and the area under precision recall curve

(AUPRC) to overcome the class imbalance problem. James

[18] and Kendrick [19] discussed the meaning and use of

the ROC curve and PR curve. They are commonly used

in diagnositic problems, especially in binary classification

of imbalanced datasets. Therefore, it is a particularly good

evaluation for our prediction task.

Table 2 shows the comparison of baseline model and opti-

mized model using five different machine learning algorithms.

For baseline models, all five algorithms performed well pre-

dicting death events using our dataset with the baseline model.

The logistic regression algorithm has the highest precision

of 0.7177. The random forest algorithm achieves the highest

recall at 0.8916 with a 0.4146 accuracy. The best overall F1-

score is 0.6838 when we apply the decision tree algorithm.

The baseline model indicates that clinical trial features could

be used in machine learning models to predict potential

occurrence of death events.

B. Optimization: Variance-Based Feature Selection Results

Fig. 3 shows the top 10 features with the highest variances

and frequencies. After variance-based feature selection pro-

cess, the dimension is reduced from 122,586 to 16,379. First,

the two features ”number of participants” (σ=38147880.4) and

”median age” (σ= 5044.5) have a significantly higher level of

variance than other features. This is expected because these

two features are the only two columns with numerical values.

The other columns are all binary values. As shown in Figure

Fig. 3. Top ten features with the highest variance and frequency.

3, among the rest of the top-ranked features, most of features

are common, non-serious adverse events in clinical trials, such

as headache, nausea, and vomiting.

We draw some conclusions from the variance analysis. First,

it is difficult to derive any clinical conclusions based on the

frequency (or variance) of the features. Since the value of a

feature can be only 1 or 0, conducting an analysis of variance

would be useless. The top features can reflect only the most

common factors in the entire dataset. However, the variance-

based feature selection approach is useful in reducing the

noise. The reasons are below. First, in the process of machine

learning dataset construction, thousands of features are listed

as independent factors according to their feature names. There

are some types of ”bad” features, which almost no one uses

in the clinical report. These bad features often have low

frequencies for a variety of reasons, whereas ”good” features

often provide rich information and have higher frequencies.

The high-frequency features are usually higher quality fea-

tures due to the precision of their terminology and great

scalability. The low-frequency features are often problematic

in a variety of ways and add noise to the classification model.

Therefore, deleting low-variance features can significantly

improve the quality of the dataset.

C. Semantic Mapping Results

We adopted the UMLS thesaurus library to conduct seman-

tic mapping. Features with similar semantic meanings were

mapped into a single feature. Those features that shared the

same Concept Unique Identifier in the library were regarded

as having similar semantic meanings. For example, ”high

blood pressure” and ”hypertension” were merged into a single

feature. After all synonyms of the feature set were mapped,

the dimension decreased from 16,379 to 13,120.

D. Predictive Model Improvement After Feature Engineering

In table 2, the optimized model shows the performance after

the three feature selection approaches discussed above. For

death events, the support vector machine has the highest F1-

score at 0.7075, with precision at 0.8106 and recall at 0.6354.

The logistic regression and nave Bayes algorithms also have

high F1-scores, reaching 0.6912 and 0.6924, respectively.

According to the comparison between baseline models

and optimized models, most algorithms show some level of

improvement, although the decision tree and random forest

algorithms shows decreases in performance. The nave bayes
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TABLE I
CLINICAL TRIAL FEATURE SUMMARY

Type Name Example Value Example Value Type Total Count

Predictor variable Participants’ information
Main age 45.8 Numeral 23,374
# of participants 543 Numeral 23,374

Predictor variable Phase Phase number Phase 3 Nominal 1-4 23,374
Predictor variable Medical conditions Renal Failure 1 or 0 Binary 10,371(distinct)
Predictor variable Trial interventions Prograf(tacrolimus) 1 or 0 Binary 27,316(distinct)
Predictor variable Serious adverse events Anemia 1 or 0 Binary 36,227(distinct)
Outcome variable Death Events Death True Boolean 1,820 true values

TABLE II
COMPARISON OF FOR FIVE MACHINE LEARNING ALGORITHMS AT PREDICTING DEATH EVENTS

Algorithms Tags
Baseline Model Optimized Model

Precision Recall F1-score AUROC AUPRC Precision Recall F1-score AUROC AUPRC

Logistic Regression
Non-death 0.5843 0.8314 0.6815

0.7153 0.6258
0.6577 0.7865 0.7115

0.7344 0.8194
Death Event 0.7177* 0.4202 0.5254 0.7697 0.6358 0.6912

SVM(linear)
Non-death 0.6615 0.3686 0.4688

0.5918 0.7384
0.6706 0.8333 0.7382

0.7110 0.799
Death Event 0.5684 0.8151 0.6649 0.8106* 0.6354 0.7075*

Naive Bayes
Non-death 0.5843 0.8314 0.6815

0.6218 0.7153
0.6590 0.7573 0.6998

0.7042 0.7932
Death Event 0.7162 0.4201 0.5209 0.7508 0.6510 0.6924

Decision Tree
Non-death 0.8286 0.6776 0.7406

0.7416 0.7313
0.7982 0.6276 0.6978

0.6952 0.718
Death Event 0.6134 0.7849 0.6838* 0.5781 0.7629 0.6529

Random Forest
Non-death 0.9486 0.6137 0.7405

0.6658 0.7526
0.9678 0.5554 0.7012

0.6202 0.7354
Death Event 0.4146 0.8916* 0.5617 0.3099 0.9154* 0.6623

Fig. 4. Change in performance from before optimization (Table 2 baseline)
to after feature selection

model has the highest level of improvement with a 0.1670

increase in F1-score. In terms of F1-score, the support vector

machine algorithm is the best model, with an improvement

of 4.2%. This F1-score is high enough to be valuable for

estimating the risk for a critical event such as patients death.

The result also indicates that the methods used for feature

selection are reliable approaches to improving the performance

of predictive models. Overall, the five machine learning algo-

rithms deliver impressive performances in predicting clinical

outcomes. Fig. 4 provides the measurements of five classifiers

in area under ROC curve, and area under PR curve.

IV. DISCUSSION

This study explored the potential of leveraging clinical trial

reports to build models to predict adverse events. To identify

clinical factors that contribute to the risk of death, we built

novel machine learning models to predict death outcomes in

clinical trials. Our model could be used to improve trial design

and safety. By leveraging clinical trial big data, we developed

a method to normalize and evaluate clinical trial factors. We

analyzed these clinical trial factors and optimized the model

using statistical methods. The selected factors were then used

to train machine learning classification algorithms to predict

death events. The best algorithm (the support vector machine

algorithm) achieved a precision of 81.06% and a recall of

63.54% in predicting death events.

Our study focuses on clinical trial adverse outcomes [20].

Clinical trials are designed to study and evaluate the safety

and efficacy of medical interventions. Due to the experimental

nature of clinical trials and the uncertainty of risk factors,

participants in clinical trials are often affected by adverse

events [6], [21], [22]. Some of these adverse events may have

lethal effects [23], [24]. Our study shows the potential to

leverage data-driven techniques to improve clinical trial design

and monitoring, which could lower participants risk of harmful

events. This study also demonstrates the possibility of using

clinical trial data to predict the risk of life-threatening events.

A. Feature Analysis

The feature analysis presents little potential in interpreting

the clinical meaning, and further professional analysis may

be needed. In terms of performance, the unoptimized dataset

and optimized dataset each have advantages, depending on the

adopted machine learning algorithms. Another point is that

a binary classifier is not the best option for predicting the

occurrence of death events, especially when the result is used

for clinical analysis. Instead, developing targeted probability

models could be a better approach for estimating the risk of

death events.
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B. Limitations and Future Work

There are two major limitations of this study. First, we

evaluated each clinical factor independently, overlooking the

potential internal correlations between clinical factors. Re-

search shows that adverse event combinations could be key

predictors of severe adverse events [25]. Applying association

rule mining algorithms and generating feature combinations

could be helpful in uncovering strong combinational predic-

tors for death events and could improve the performance of

machine learning models. Second, we used only structured

data, such as target conditions, interventions, and adverse

events. Some unstructured data, such as plain-text descriptions

of clinical trials, may contain key information that is more

important than the structured data in Table 1. Finally, the

predictive outcome of this study is a boolean value instead

of a probability value. The reason is most trials reported only

a small number of deaths, which makes it difficult to develop

probability models to predict the incident rate of death events.

V. CONCLUSION

By leveraging clinical trial big data, we developed machine

learning classifiers for predicting death events in clinical trials.

This study indicates that routine clinical trial reports contain

key clinical factors that can be used to build predictive models

to estimate the risk of death events. Five algorithms were

evaluated in this study. The best model is based on the support

vector machine algorithm, and it has a precision of 81.06%, a

recall of 63.54%, and an F1-score of 70.75%. Our model could

be used to predict death events and to improve the safety of

patients who participate in clinical studies.

Our methodology has two innovative aspects: 1) We propose

a machine learning-based approach to convert a text clinical

report to a matrix dataset that is friendly for machine learning

training algorithms. 2) We use novel statistical analysis to

optimize the dataset and produce better performance. This

predicting classifier can serve as an adjunct tool of risk control

for clinical experts. Here is our vision: At the start of a clinical

study, a clinical trial expert is able to assess whether serious

adverse events are likely to occur in the upcoming clinical

trial and to see what factors contribute most to those potential

serious adverse events.
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