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A B S T R A C T

Organizing the descendants of a concept under a particular semantic relationship may be rather arbitrarily
carried out during the manual creation processes of large biomedical terminologies, resulting in imbalances in
relationship granularity. This work aims to propose scalable models towards systematically evaluating the
granularity balance of semantic relationships. We first utilize “parallel concepts set (PCS)” and two features (the
length and the strength) of the paths between PCSs to design the general evaluation models, based on which we
propose eight concrete evaluation models generated by two specific types of PCSs: single concept set and
symmetric concepts set. We then apply those concrete models to the IS-A relationship in FMA and SNOMED CT’s
Body Structure subset, as well as to the Part-Of relationship in FMA. Moreover, without loss of generality, we
conduct two additional rounds of applications on the Part-Of relationship after removing length redundancies
and strength redundancies sequentially. At last, we perform automatic evaluation on the imbalances detected
after the final round for identifying missing concepts, misaligned relations and inconsistencies. For the IS-A
relationship, 34 missing concepts, 80 misalignments and 18 redundancies in FMA as well as 28 missing concepts,
114 misalignments and 1 redundancy in SNOMED CT were uncovered. In addition, 6,801 instances of im-
balances for the Part-Of relationship in FMA were also identified, including 3,246 redundancies. After removing
those redundancies from FMA, the total number of Part-Of imbalances was dramatically reduced to 327, in-
cluding 51 missing concepts, 294 misaligned relations, and 36 inconsistencies. Manual curation performed by
the FMA project leader confirmed the effectiveness of our method in identifying curation errors. In conclusion,
the granularity balance of hierarchical semantic relationship is a valuable property to check for ontology quality
assurance, and the scalable evaluation models proposed in this study are effective in fulfilling this task, espe-
cially in auditing relationships with sub-hierarchies, such as the seldom evaluated Part-Of relationship.

1. Introduction

Biomedical ontologies and controlled terminologies play a vital role
in the field of biomedical informatics, including in image retrieval [1],
information extraction [2], and data integration [3], which further
demonstrates the importance of Ontology Quality Assurance (OQA)
[4,5]. As the key component of biomedical terminologies, semantic
relationships inevitably became the hot spot of auditing methods.
Bodenreider investigated the use of adjectival modifiers for determining
consistency in the UMLS [6]. Gu utilized relationship structures for
detecting possible incorrect relationship assignments in FMA [7]. In our
past studies, we leveraged lexical-structural information to audit the
hierarchical relationships in FMA [8,9]. Zhang also performed lattice-
based structural auditing of SNOMED CT [10]. Other than lexical and
structural based approaches, Geller [11] and Wei [12] used abstraction

networks [13] for quality assurance in the UMLS and SNOMED CT,
respectively. We refer to Zhu’s review article [14] for more detailed
information of early studies in this field.

Under a particular hierarchical relationship, how to select and or-
ganize the descendants of a concept is a challenging problem. Usually,
the descendants are at levels of semantic granularity finer than that of
the concept [15,16]. To keep the relationship consistent, we believe
that it is better for the descendants at the same level of hierarchy to stay
at a same level of semantic granularity. In other words, the semantic
distances between every pair of concepts at two particular levels of
semantic granularity are supposed to be the same. However, in reality,
although domain expert knowledge was involved during the creation
processes, inconsistency and imbalance in relationship granularity may
still be introduced into biomedical terminologies. By “granularity of a
relationship r” in this work we mean the level of detail at which
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knowledge is presented in a biomedical terminology, represented by the
semantic distances between r-related concepts. The longer the dis-
tances, the coarser the granularity, and vice versa.

Weng pointed out that granularity mismatch is one type of semantic
mismatches across domain models that could be a bottleneck of se-
mantic harmonization [17]. Richesson also concluded that different
granularities between heterogeneous coding systems cause an issue for
data interoperability [18], not to mention the imbalanced relationship
granularity within a terminology. However, only a limited number of
auditing methods on the granularity of relationships exist. Sun and
Zhang [19] identified the granularity differences between two biome-
dical ontologies through rules to distinguish among different types of
subclasses and classifications. He et al. [20,21] adopted the term
“density” instead of granularity and defined a set of topological patterns
to demonstrate different concept densities across pairs of terminologies,
aiming to enrich SNOMED CT conceptual content and support semantic
harmonization of SNOMED CT with other Unified Medical Language
System (UMLS) terminologies.

These past works focused on granularity differences across ter-
minologies using comparative studies, while we propose a novel sys-
tematic mechanism for auditing the intrinsic granularity balance of
relationships within a targeted biomedical terminology in this paper.

As far as we know, currently there is no effective method for cal-
culating the granularity of semantic relationships directly. Therefore,
we choose to examine the granularity balance relatively by utilizing
“parallel concepts set (PCS).” Two concepts are parallel if they share a
similar level of conceptual knowledge. As a result, a PCS contains a
number of concepts, which are parallel to each other. The assumption
is: If the granularity of a relationship in a terminology is balanced, then
all the paths along this relationship from one set of parallel concepts to
another one are expected to be balanced in terms of “semantic distance,”

which is represented by the length and the strength of each path. The
length of a path is the number of steps, and the strength of it is in-
troduced to deal with cases when the semantic relationship has a
hierarchy of subproperties, for example, the Part-Of relationship in
FMA has a hierarchy of three levels, as shown in Fig. 1. Subproperties of
each hierarchy are assigned a distinct semantic weight and the strength
of a path is the aggregation of all the semantic weights of the sub-
properties along it. The granularity is balanced if the lengths of all the
paths are the same, as well as the strengths, if needed. Fig. 2 demon-
strates two examples with imbalanced length and imbalanced strength
in SNOMED CT and FMA, respectively.

Based on the idea above, taking the length and the strength aspects
into account, we first proposed two general models for evaluating the
granularity balance of relationships. Then, we selected two kinds of
PCSs for experiments: one contains a single concept in the set, as illu-
strated by the two nodes in Fig. 2(b), and the other one contains a pair
of symmetric concepts, as illustrated by the two dashed rectangles in
Fig. 2(a). As demonstrated in our previous work [8], symmetric con-
cepts are bisimilar, thus suffice to be parallel concepts. Based on the
two types of PCSs, we achieved four groups of specialized evaluation
models. At last, we applied these models to the IS-A relationship in FMA
and SNOMED CT’s Body Structure subsets, as well as to the Part-Of
relationship in FMA. Results show that there are 121 instances of im-
balances in FMA and 124 of that in SNOMED CT for the IS-A re-
lationship. On the other hand, 6801 instances of imbalances for the
Part-Of relationship were also detected, including 2320 length re-
dundancies and 926 strength redundancies. After removing those re-
dundancies and rerunning the algorithms, the total number of im-
balances for the Part-Of relationship dramatically reduced by 95%. The
final results were automatically classified into missing concepts, mis-
aligned relations, and inconsistencies using algorithms. In addition,
manual curation performed by the FMA project leader confirmed that
all of the inconsistencies and missing concepts, as well as most of the
inappropriate relation assignments identified by our study are correct.

2. Background

2.1. The Foundational Model of Anatomy (FMA)

The FMA is both a theory of human anatomy and an ontology ar-
tifact [22]. In particular, it is a theory of the canonical, phenotypic
structure of the human organism at all biologically salient levels of
granularity. As a theory of canonical anatomy, it ranges over those
categories of entities which are idealizations of an organism body and

Fig. 1. The three-level hierarchy of the Part-Of relationship in FMA.

Fig. 2. (a) An example with imbalanced length in SNOMED CT. (b) An example with imbalanced strength in FMA.
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its typical component parts. As a computational artifact, it is a formal
representation of this theory, suitable for machine manipulation. The
model underlying the FMA is a frame-based representation with more
than 100,000 concepts including macroscopic, microscopic and sub-
cellular canonical anatomy.

For our analysis, we used the version 4.4.0 of FMA created in June,
2016. It is a version distributed as an RDF/XML-based serialization that
enables it to be stored in an RDF data store and made available to be
queried via SPARQL over internet protocol.

2.2. SNOMED CT

SNOMED CT is the largest clinical terminology in the world [23],
currently maintained by SNOMED International [24]. It provides
standards for encoding clinical content, ranging from clinical findings,
procedures, to diseases and diagnoses in electronic health records
(EHRs), aiming to enhance interoperability. Concepts in SNOMED CT
are arranged into 19 subhierarchies including Body Structure. In this
study, we used the US Edition of SNOMED CT released in March 2016,
and focused on its Body Structure subset, which contains almost 30,000
concepts.

3. Methods

3.1. Evaluation models

For any hierarchical relationship, we examined the relative granu-
larity balance by checking the properties of paths between nodes at
different levels of conceptual knowledge. If the relationship has a ba-
lanced granularity, all the paths from a source node to a target node are
expected to be balanced in terms of length and strength. As demon-
strated in Fig. 2(b), the source node and the target node are both single
concepts, and the paths between them are imbalanced in strength. In
Fig. 2(a), the source node and the target node are both sets of symmetric
concepts, and the paths between them are imbalanced in length. A pair
of concepts is called symmetric if the concept names are the same except
for the possible difference in a single occurrence of modifiers used [8].
For instance, (“Lower extremity part,” “Upper extremity part”) is a sym-
metric concept pair concerning the modifier pair Upper and Lower.

As noticed, two different types of end nodes were encountered in the
examples of Fig. 2. In this study, to give a scalable mechanism for
evaluating relationship granularity, we generalized the nodes to “PCSs,”
which are comprised of concepts sharing the same level of conceptual
knowledge, such as the symmetric concepts in Fig. 2(a). Leveraging
PCSs, we first introduced the formal evaluation models and then spe-
cialized them using two concrete types of PCSs.

3.1.1. Formal evaluation models
We audited the granularity balance in a relative way by evaluating

the semantic distances between PCSs. For two PCSs …P P P{ , , , }i1 2 and
…C C C{ , , , }j1 2 and a semantic relationship r, if there exist m ( ⩾m 2) dis-

tinct r-paths (paths with only the relationship r along them) from
…C C C{ , , , }j1 2 to …P P P{ , , , }i1 2 , we define the length of the k-th path as the

number of steps along it, denoted as ⩽ ⩽l k m(1 )k . If there exists
≠k k1 2 such that ≠l lk k1 2, which means, the semantic distances are

imbalanced in length, r is determined as imbalanced in length.
Furthermore, if all the r-paths have the same length, denoted as l, and r
has a hierarchy of subproperties, we define the strength of the k-th path
as ∑ ⩽ ⩽

=
w k m(1h

l
kh1 and ⩽ ⩽h l1 ), where wkh represents the se-

mantic weight of the h-th step along the k-th path. The strengths of the
m paths are expected to be the same if the relationship r is balanced in
granularity.

Fig. 3 illustrates the general models for evaluating the semantic
distances from …C C C{ , , , }j1 2 to …P P P{ , , , }i1 2 in terms of length and strength,
respectively. The left model is denoted as an …l l l: : : m1 2 model, which
evaluates the granularity balance of r by length, and the right model
evaluates the granularity balance of r by strength. Please note that the
paths may have intersections and that the concepts in the end nodes
(PCSs) may appear in the paths too.

In the remainder of the paper, we specialized the models in Fig. 3
and focused on the 1: ⩾n n( 1) models instead of the generalized

…l l l: : : m1 2 models due to the fact that most of the ⩾m k m k: ( , 1) models
have intermediate PCSs in the middle of the two paths, which will es-
sentially divide them into 1:n models.

3.1.2. Specialized evaluation models
Two types of PCSs were selected to evaluate the granularity balance

of semantic relationships in both FMA and SNOMED CT: (1) Type I:
single concept set containing only one concept and (2) Type II: sym-
metric concepts set containing a pair of symmetric concepts. As de-
monstrated in our previous work [8], symmetric concepts are bisimilar,
thus suffice to be parallel concepts. The four combinations of the two
types generate four cases of evaluation models, which are demonstrated
in Fig. 4. For each case, there is a 1:lmodel on the left for evaluating the
relationship by length, and on the right, there is a 1:1 model for eval-
uating the relationship by strength, where r and ′r represent two sub-
properties of the same relationship at different levels, if they exist.

Note that for each case, the labels along the paths in the left graph
represent the number of steps, while the labels along the paths in the
right graph represent two subproperties at different levels of the same
relationship. Besides, the two paths in each model of Case (II) should
aim to different destination concepts, otherwise, the case will be cov-
ered by Case (I). For the same reason, the two paths in the models of
Case (III) should depart from different source concepts. Also, the paths
in the models of Case (IV) do not converge because otherwise the sce-
narios are covered by the former three cases.

In Cases (II), (III) and (IV), we use the pair u v( , ) to stand for a pair of
symmetric modifiers such as (left, right). Putting the symmetric

Fig. 3. The general models for evaluating the semantic distances be-
tween two PCSs: (a) The …l l l: : : m1 2 length model. (b) The strength
model (all paths have length l).
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modifiers into the same context C results in a symmetric concept pair
C u C v( [ ], [ ]), such as (left heart, right heart). Each symmetric concept pair
C u C v( [ ], [ ]) forms a PCS.

Recall the examples in Fig. 2, we can discover that Fig. 2(a) is an
instance of Case (IV) 1:3 length model, and Fig. 2(b) is an instance of
Case (I) strength model.

For simplicity, in the remainder of the paper, we call the model that
evaluates the granularity balance of relationships by length the length
model, and correspondingly for the strength model. For a semantic re-
lationship r with a hierarchy of subproperties such as Part-Of in FMA,
when evaluating its granularity balance using length models, we con-
sider all of the subproperties as r since every subproperty ′r implies r.

3.2. Redundancy removal

One observation of the models in Fig. 4 is that all Case (I) instances
indicate redundancies based on the following two facts.

1. The transitive feature of a relationship r states that
If A r B( , , ) and B r C( , , ), then A r C( , , ).
Since both IS-A and Part-Of are transitive, the direct path with
length 1 in the 1:l length model of Case (I) (see Fig. 4) is redundant.

2. Suppose ′r is a subproperty of r, then

′C r P C r P( , , ) implies ( , , ),

which indicates that the C r P( , , ) path is redundant in the strength
model of Case (I). Fig. 2(b) illustrates an instance of this case: Since
branch_of is a subproperty of regional_part_of (see Fig. 1), the edge
regional_part_of is redundant.

In the remainder of the paper, redundancies implied by the first fact
are named length redundancies and those implied by the second fact
are named strength redundancies.

As argued in FEDRR [25], “The principle of parsimony in ontological
modelling is a direct consequence of closed-world assumption (CWA). It
refers to the fact that relations implied by the transitive property of a re-
lationship, …, must not be explicitly stated…. Detecting redundant relations
is an important task for OQA,” it is necessary to remove redundancies
from ontologies for quality improvement.

Another observation is that there may be instances with mixed
cases, so the results in the four cases are not necessarily disjoint if only
concept nodes are concerned. An instance is depicted in Fig. 5: It con-
tains 1:2 length imbalances from all the four cases in Fig. 4, as well as
Case (I) strength imbalances.

Based on the above two observations, both length redundancies and
strength redundancies in Case (I) may introduce imbalanced instances
into the other three cases. For instance, if the four redundant Part-Of

Fig. 4. The four cases of specialized evaluation models. For each case, there is a 1:l model on the left for evaluating the relationship by length, and on the right, there is a 1:1 model for
evaluating the relationship by strength. Dashed rectangles represent PCSs.

Fig. 5. A mixed-case instance for the Part-Of relationship in
FMA. The relations indicated by red arrows are redundant.
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relations indicated by red arrows in Fig. 5 were removed, there would
be no granularity imbalance in this graph any more. Hence, in order to
analyse the influence of redundancies on the total results of imbalances,
without loss of generality, we select the complex Part-Of relationship in
FMA as experiment subject and conduct two additional rounds of
granularity balance checking after removing length redundancies and
further strength redundancies.

3.3. Implementation

We checked the granularity balance for the IS-A relationship in FMA
and SNOMED CT’s Body Structure subset, as well as for the Part-Of
relationship in FMA. Since there is no subproperty for IS-A, only length
models were needed to evaluate its granularity balance in both FMA
and SNOMED CT.

3.3.1. Preprocessing of data
The OWL version v4.4.0 of FMA downloaded from its official site

was stored in Virtuoso [26] and queried using SPARQL language [27],
and the US Edition of SNOMED CT released in March 2016 was stored
in MySQL for computation. Due to the large volume and complex
structures of the two terminologies, only the 1:2 and the 1:3 patterns for
length models were considered in our experiments. Several datasets
were prepared beforehand:

1. For the IS-A relationship: we computed a set IR1 which stores con-
cept pairs related by one step of IS-A, a set IR2 which stores concept
pairs indirectly related by two steps of IS-A’s, and a set IR3 which
stores concept pairs indirectly related by three steps of IS-A’s.

2. For the Part-Of relationship: we computed a set PR1 which stores
concept pairs related by one step of Part-Of, a set PR2 which stores
concept pairs indirectly related by two steps of Part-Of’s, and a set
PR3 which stores concept pairs indirectly related by three steps of
Part-Of’s.

3. To retrieve Type II PCSs, i.e., symmetric concepts sets, we computed
a set P which stores 11 modifier pairs: In order to retrieve all the
modifier pairs, we first obtained all the class names in FMA and used
the Stanford Parser [28] to obtain all the Noun-Phrase (NP) chunks
without prepositions. For all the modifiers in those 21,616 NP
chunks, any two of them that share a common context were selected
out to form a modifier pair. Finally, we ranked all the modifier pairs

by the number of common contexts the two members share. It
turned out that there are 23 modifier pairs whose two members
appeared spontaneously in at least 100 distinct contexts, generating
7867 PCSs. To reduce computational complexity, we only chose the
first 11 pairs to form the set P: (left, right), (anterior, posterior),
(lateral, medial), (first, second), (second, third), (first, third), (superior,
inferior), (lateral, anterior), (fourth, third), (fourth, second), (upper,
lower), which generate 6168 PCSs (78.4% out of 7867) in FMA.
Without loss of generality, we restricted the symmetric concepts
observed in this study to those generated by P only.

The imbalance-checking algorithms were designed based on the
cases in Fig. 4 and quite routine, thus omitted in this paper.

3.3.2. Whole procedure
The three rounds of computations are briefly described as follows:

• Apply the imbalance-checking algorithms to the IS-A relationship in
FMA and SNOMED CT, as well as to the Part-Of relationship in FMA.
Output the original results. The two additional rounds of computa-
tion are conducted on the Part-Of relationship only. It will be the
same procedure for the IS-A relationship.

• Round 2: Remove length redundancies (including the 1:2 and the
1:3 patterns) detected by Round 1 from FMA. Re-calculate PR PR,1 2

and PR3. Rerun the algorithms. Update results.

• Round 3: Further remove strength redundancies in Case (I) from the
updated results. Re-calculate PR PR,1 2 and PR3. Rerun the algo-
rithms. Output the final results.

4. Results

After applying the preprocessing procedure to FMA, we found
104,226 concept pairs directly related by one IS-A in IR1, 104,064
concept pairs related by two-step IS-A’s in IR2, and 103,702 concept
pairs related by three-step IS-A’s in IR3. Those numbers for PR PR,1 2 and
PR3 in FMA are 61,273, 82,681 and 123,893, respectively. On the other
hand, the numbers of elements in IR IR,1 2 and IR3 for IS-A in SNOMED
CT’s Body Structure subhierarchy are 38,976, 64,062, and 106,769,
respectively. They are all presented in Tables 1 and 2.

Table 1
Results for IS-A in FMA and SNOMED CT’s body structure subset.

Terminologies Pair counts Case I Case II Case III Case IV Total

IR1 IR2 IR3 1:2 1:3 1:2 1:3 1:2 1:3 1:2 1:3 1:2 1:3

FMA 104,226 104,064 103,702 15 3 2 – 61 11 29 – 107 (88%) 14 (12%)
SNOMED CT 38,976 64,062 106,769 1 – 5 1 75 11 24 7 105 (85%) 19 (15%)

Table 2
Comparative results for the three rounds of examination on the Part-Of relationship in FMA.

Models Pair counts Case I Case II Case III Case IV Total

PR1 PR2 PR3 1:2 1:3 1:2 1:3 1:2 1:3 1:2 1:3

Round 1 61,273 82,681 123,893 1807 513 107 123 1000 208 1048 129 (Rnd1: 4935)
Round 2 59,513 75,781 106,036 – – 19 15 222 106 156 17 (Rnd2: 535)
Round 3 58,620 71,676 95,283 – – 19 15 123 22 95 17 (Rnd3: 291)

Regional-Part-Of vs. branch-of 850/830/– 3/3/1 319/315/5 502/483/5
Strength Regional-Part-Of vs. tributary-of 72/59/– 5/5/5 64/31/7 36/36/6 (Rnd1: 1866)

Part-Of vs. regional-Part-Of – – 3/3/3 4/4/4 (Rnd2: 1777)
Part-Of vs. constitutional-Part-Of 4/4/– – – 4/4/– (Rnd3: 36)
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4.1. Examination on the IS-A relationship in both FMA and SNOMED CT’s
Body Structure sub-hierarchy

For the IS-A relationship, Table 1 illustrates the numbers of length
imbalances of the four cases in FMA and SNOMED CT’s Body Structure
subset separately after Round 1. For each case, the length imbalances
are divided into two patterns: the 1:2 pattern and the 1:3 pattern. The
number of instances for each pattern is presented individually. As
shown in Table 1, more than 85% of the instances take the 1:2 pattern,
in both FMA and SNOMED CT, and more than 50% of them are Case
(III) instances. On the other hand, considering the vast number of
concept pairs in IR IR,1 2 and IR3, it is remarkable that there are only
about 100 length imbalances in both terminologies, which may be owed
to the frequent quality assurance attempts on the IS-A relationship in
the past.

Fig. 6 demonstrates four examples with imbalanced length for the
IS-A relationship in the two terminologies. To save space, only one
example is presented for each case. Note that there are two duplicate
nodes Lateral cord of brachial nerve plexus in Ex.2, and the 1:2 length
imbalance is actually caused by the triple (Lateral cord of brachial nerve
plexus, is_a, Anterior cord of brachial nerve plexus), which is not correct.

Since all Case (I) instances indicate redundancies, Table 1 shows
that there are 18 redundancies in FMA and 1 redundancy in SNOMED
CT’s Body Structure subset concerning the IS-A relationship. We
manually removed them from the two terminologies and found that
instances of the other three cases remain unaffected, which indicates
that these redundancies do not mix with the other cases.

4.2. Three rounds of examinations on the Part-Of relationship in FMA

Table 2 presents the comparative results for the three rounds of
evaluation on the Part-Of relationship in FMA using the length models
and the strength models of the four cases (see Fig. 4). Round 1 presents
the original results after the first round of computation. Round 2 and
Round 3 present the computation results after removing length re-
dundancies and further strength redundancies, respectively. The upper
part of Table 2 illustrates the distribution of the length-imbalanced
instances on the 1:2 and the 1:3 patterns from Case (I) to Case (IV),
separated by horizontal lines for each round. The bottom part of Table 2
demonstrates the distribution of the strength-imbalanced instances on

different pairs of subproperties of the Part-Of relationship in the four
cases, separated by ‘/’ for each round. The last column demonstrates the
total numbers of imbalances after each computation round.

Results of Round 1 show that for length imbalances, 3962 out of the
total 4935 (80%) instances are 1:2 length imbalances. Among all the
four cases, Case (I) turns out to be the most common one (almost 50%),
and Case (II) has the least number of instances. For strength imbalances,
although the Part-Of relationship in FMA has six subproperties (in-
cluding itself) on three levels (see Fig. 1), the strength imbalances only
take place in the following four pairs: regional_part_of vs. branch_of, re-
gional_part_of vs. tributary_of, part_of vs. regional_part_of and part_of vs.
constitutional_part_of, and nearly 90% of them occur between re-
gional_part_of and branch_of. Besides, more than a half of all the in-
stances with imbalanced strengths are Case (I) imbalances, while Case
(II) occupies only a negligible portion.

As Table 2 shows, the number of length imbalances is reduced by
89% (from (4935− 535)/4935) after Round 2 and by another 5%
(from (535− 291)/4935) after Round 3. Also, the number of strength
imbalances is reduced by 5% (from (1866− 1777)/1866) after Round
2 and by another 93% (from (1777− 36)/1866) after Round 3. These
results illustrate that around 90% of the length imbalances are in-
troduced by length redundancies, and the same for strength imbalances.
Other types of anomalies contributing to the remaining imbalances are
analysed in the following section.

5. Evaluation of results

We first perform automatic evaluation for the IS-A and the Part-Of
results, and then conduct manual curation on them. As shown by
Table 1, there are 121 instances of imbalances in FMA and 124 of that
in SNOMED CT for the IS-A relationship. Besides, Table 2 shows that
there remain 291 length imbalances and 36 strength imbalances for the
Part-Of relationship after eliminating all the redundancies at the end of
Round 3. To validate these potential anomalies, we analyse their ab-
normal types using automatic evaluation algorithms based on their
different features.

Inconsistencies. The 36 strength imbalances from Case (II) to Case
(IV) (see Fig. 4) indicate inconsistencies. An instance of Case (III) is
shown in Ex.1 of Fig. 7: The two triples are (Right hemidiaphragm, re-
gional_part_of, Diaphragm) and (Left hemidiaphragm, part_of, Diaphragm).

Fig. 6. Length-imbalanced instances for the IS-A relationship: the left two examples are in SNOMED CT, and the right two examples are in FMA.
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Although regional_part_of implies part_of, the reverse does not hold true,
which means, (Left hemidiaphragm, regional_part_of, Diaphragm)does not
necessarily exist, thus introduces inconsistency. A suggestion for re-
mediation is to change the relation part_of to regional_part_of, which was
verified by an FMA expert.

Missing concepts, and misaligned relations. Length imbalances
from Case (II) to Case (IV) suggest the possibility of introducing new
intermediate concepts and corresponding relations to the terminology,
or deleting existing concepts and relations if the granularity is supposed
to be coarse. Usually, the former suggestion is more feasible. As a result,
for each intermediate concept node in the 1:2 and 1:3 length im-
balances, we automatically check if its symmetric concept exists in the
terminology using algorithms.

1. If the targeted intermediate concept name does not contain any
related modifier, the symmetric concept of it is supposed to be itself.
An example is shown in Ex.2 of Fig. 7. In this example, the modifier
pair of interest is (upper, lower). Since the concept Superior med-
iastinal lymph node does not contain any element from the pair, it
takes itself as its symmetric concept in this context. To keep the
granularity balanced, there supposes to be a relation is_a from Lower
paratracheal lymph node to Superior mediastinal lymph node. There-
fore, instances in this group can be viewed as misaligned relations.

2. If the symmetric concept for the intermediate concept does not exist
in the terminology, the instance will be classified as missing con-
cept. As illustrated by Ex.3 of Fig. 7, there may need to be a new
concept named Right stratum of interventricular septum and the two
corresponding relations.

3. If the symmetric concept for the intermediate concept exists in the
terminology but the relations around it do not keep the granularity
balanced, it is a case indicating misaligned relations, too. For in-
stance, in Ex.4 of Fig. 7, although Integument of lower limb exists in
FMA, the relation constitutional_part_of does not exist from Integu-
ment of lower limb to Lower limb, thus introduces a misalignment.

Note that adding the suggested new concepts and relations to the
terminology will make the direct paths (represented as red arrows in
Fig. 7) redundant again. As thus, redundancy removal needs to be
conducted at last.

Using our classification algorithms, for the Part-Of relationship, we

detected 39 missing concepts and 198 misalignments in the 237 1:2
length imbalances. In addition, for the 54 1:3 length imbalances, since
each instance has two intermediate nodes, the total number of inter-
mediate concepts is 108, among which 12 missing concepts and 96
misalignments were identified by our algorithms, shown in Table 3. For
the IS-A relationship, 34 missing concepts and 80 misalignments in
FMA as well as 28 missing concepts and 114 misalignments in SNOMED
CT were uncovered, as also presented in Table 3.

All the results for FMA along with suggested remediation have been
reported to the FMA project leader, and will be used to implement the
corrections in FMA. As a result of manual curation, he confirmed that
all of the inconsistencies, missing concepts and most of the in-
appropriate relation assignments identified by our methods are correct.
Those misaligned relations incorrectly identified are caused by asym-
metry in some body parts. For example, the mediastinum is divided into
the superior and inferior mediastinum, of which the latter is larger, and
the inferior mediastinum is further divided into the anterior, middle
and posterior mediastinum. Hence, although the triple (content of
anterior mediastinum, regional_part_of, content of inferior mediastinum)
exists in FMA, there should not be a regional_part_of from content of
anterior mediastinum to content of superior mediastinum. As the effec-
tiveness of our models in identifying curation errors was confirmed by
the FMA expert, the results for SNOMED CT will also be reported to
SNOMED International to help with quality improvement.

6. Discussions

In this study, we proposed a systematic mechanism for evaluating
the granularity balance of hierarchical semantic relationships within
large biomedical terminologies for quality assurance. Applications of
the evaluation models were conducted on the IS-A relationship in both

Fig. 7. Instances of abnormal types for 1:2 length imbalances. The concept in blue indicates a missing concept in FMA. Dashed arrows represent missing relations. Red arrows represent
direct paths to be further removed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Automatic evaluation on the results.

FMA (IS-A) FMA (Part-Of) SNOMED CT (IS-A)

1:2 1:3 1:2 1:3 1:2 1:3

Missing concepts 33 1 39 12 22 6
Misalignments 59 21 198 96 82 32
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FMA and SNOMED CT, as well as on the Part-Of relationship in FMA. A
considerable number of imbalanced instances was uncovered. Further
analysis shows that above 90% of the imbalanced instances for the Part-
Of relationship in FMA are redundancies or are caused by them, and the
remaining instances are either inconsistencies, missing concepts or
misaligned relations. The results have been reported to an ontology
expert and will be used to implement the corrections in further versions
of FMA. In all, the granularity balance of hierarchical semantic re-
lationship is a valuable property to check for ontology quality assur-
ance, and the scalable evaluation models proposed in this study are
effective in fulfilling this task, especially in auditing relationships with
sub-hierarchies, such as the seldom evaluated Part-Of relationship.

The approach for examining the granularity balance of hierarchical
semantic relationships proposed in this paper relies on the discovery of
PCSs. A single concept is surely parallel to itself, but how to find more
parallel concepts? It depends on the unique features of each termi-
nology and the knowledge field it describes. For instance, based on the
largely bilaterally symmetric features of the human anatomy, we found
that symmetric concepts in FMA and SNOMED CT’s Body Structure
subsets suffice to be parallel concepts proposed in this study. To dis-
cover more parallel concepts, human efforts may be involved when
necessary. Another question that arises is: Do we really need PCSs with
more than two elements. Since granularity imbalances are discovered
when the paths between PCSs are imbalanced, and each path has only
one source and one destination, essentially the granularity imbalances
happen between pairs of paths. As a result, PCSs with two elements are
enough for uncovering granularity imbalances.

There are two reasons for not combining the length model and the
strength model together: One is that they discover different aspects of
granularity imbalance, including redundancies, inconsistencies and
revision suggestions, as demonstrated in the results. The other reason is
that the semantic weight assigned to a relationship may prevent the
discovery of length imbalances. For instance, suppose there is a sub-
property r1 with semantic weight k and another subproperty r2 with
semantic weight 1, then the semantic distance of one r1 will be equal to
that of k r2’s, which prevents the detection of 1:k length imbalances.

The two types of models introduced in this work can be used se-
parately. For instance, only the length models were applied to SNOMED
CT in our experiments. As a matter of fact, the length models can be
applied to any hierarchical relationship and the strength models can be
applied to any relationship with a sub-hierarchy, indicating the scal-
ability of our methods.

Comparison with prior work. Our work is close to that of He
[20,21] in that we both leveraged semantic structures between two end
nodes (concepts or PCSs) to investigate potential problems in biome-
dical terminologies, but differs from it in three aspects: Firstly, their
study focuses on differentiation across terminologies, while we pay
attention to the intrinsic imbalances of semantic relationships inside
terminologies. Secondly, the set of topological patterns proposed in
[21] only illustrates cases of length imbalances but no strength im-
balances, because they only consider the IS-A relationship. Lastly, the
end nodes for structurally congruent concepts are single concepts in
[20,21] while they are PCSs in this study, which shows that our models
are more general.

In our previous work [8], we proposed a principled ontology au-
diting approach based on structural bisimilarity between symmetric
concepts, and provided exhaustive evaluation on the IS-A relationship
in FMA. Although symmetric concepts are also leveraged in this study
to form PCSs, the underlying theory basis is totally distinct from that in
[8]. Besides, if we were to view the Matches in [8] from the perspective
of granularity balance, they would be 0:1 or 1:1 length models.

Agrawal [29] defined positional similarity sets as sets of lexically
similar concepts that differ from each other by exactly one word at the exact
same position of their fully specified names, which is similar to the Type II
PCSs (symmetric concepts sets) in our study. The differences are: (1)
Unlike symmetric concepts, the lexically similar concepts in a positional

similarity set may not suffice to be parallel concepts. (2) The modifier
pairs in our symmetric concepts were extracted from the existing ter-
minology with certain conditions, while the differing word in a posi-
tional similarity set can be any word.

As a by-product, this study detected a significant number of re-
dundancies for the Part-Of relationship in FMA. As a matter of fact,
many studies in the literature focused on auditing redundancies in large
biomedical terminologies, such as UMLS [30,31] and GO [32]. Gu [30]
checked multiple relationships between a given pair of concepts to
identify erroneous modeling in the UMLS, which differs from our study
in that the redundancies we examined were caused by the same re-
lationship other than different ones. Mougin also checked multiply-re-
lated concepts in the UMLS [31] as well as redundant relations in the
Gene Ontology (GO) [32]. The relations with granularity differences
identified in the UMLS [31] and the redundancies generated by the
same relationships in GO [32] presented in Mougin’s studies can both
be viewed as specific cases covered by our models. Moreover, we are
not aware of studies that take strength redundancies into consideration.
To the contrary, our study discovered both length redundancies and
strength redundancies from a new aspect: the granularity balance of
semantic relationships, and automatically analysed the influence of
redundancies on granularity imbalances as well.

Limitations. Although the models presented in this study are gen-
eral and comprehensive, taking the large sizes of terminologies and the
complex structures of the Part-Of relationship into account, we made
the following compromises in our experiments to reduce computational
complexity: (1) Only the 11 most frequent modifier pairs were chosen
to generate Type II PCSs for examination in FMA. There are in fact 92
modifier pairs whose two members appeared in at least 50 distinct
contexts and more if the threshold was set lower. Hence, it will require
much more computational effort to retrieve all of the Type II PCSs from
FMA. (2) For the 1: >l l( 1) patterns in the length models, we only fo-
cused on the 1:2 and the 1:3 patterns because the search space would
expand exponentially with the increase of the number l. Although our
results demonstrated that most of the instances follow the 1:2 pattern,
to obtain exhaustive results for other patterns, big data approaches such
as MapReduce cloud computing may be needed to improve algorithm
efficiency [33,34].

7. Conclusions

Our methodology is innovative in three main aspects: Firstly, we
defined parallel concepts and utilized them to design the general eva-
luation models, which provide a scalable approach easily adoptable by
other semantic relationships for studying their granularity balance.
Secondly, the Part-Of relationship in FMA was less frequently audited
than the IS-A relationship in the literature due to its complex sub-
hierarchies, while the comprehensive analysis of it performed in this
study will make it easier to handle for future auditing tasks. Lastly, our
study sheds light on an aspect of biomedical terminologies seldom
studied: the granularity balance of semantic relationships. We not only
discovered redundancies from this new aspect, but also presented an
automatic mechanism to analyse the influence of them on imbalances
and to categorize the final results into inconsistencies, missing concepts
and misaligned relations.
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